NELSON IRRIGATION CORPORATION OFFERS A FULL RANGE OF WATER APPLICATION SOLUTIONS FOR MECHANIZED IRRIGATION. FROM CONTROL VALVES TO PIVOT SPRINKLERS, AND PRESSURE REGULATORS TO END GUNS — THE PACKAGE IS COMPLETE.
THE CENTER PIVOT OFFERS THE PERFECT PLATFORM FOR SPRINKLERS TO DELIVER WATER — THE RIGHT AMOUNT IN THE RIGHT WAY.
INTRODUCING THE NEW 3030 SERIES SPRINKLER

At the heart of the 3030 Series is the new 3NV nozzle. Built with the precision accuracy of the 3TN, this innovative dial-nozzle combines multiple functions so you can effectively manage your system.

Manage your system without ever having to remove a nozzle.

Quick-change — push & turn, audible “click”
Stainless steel spring for accurate and secure positioning
Covers complete nozzle range, using the same numbering and flow rates as the 3TN nozzle system
Same color-codes as 3TN but odd-size nozzles have weather-enduring scalloped edge

Even-sized nozzles have smooth edge, odd-sized scalloped for easy ID

The 3NV nozzle fits all existing sprinkler types: rotator, spinner, accelerator, sprayhead, orbitor, part circle. Maximize efficiency with the square thread fitting.

Lugs assist installation and “press”, “spin”, “click” functionality

Arrow indicates flow direction and nozzle function: in, on, off, flush or line flush
FOR NEW SYSTEMS...
Maximize efficiency & accuracy — install sprinklers, then walk the line and install nozzles.
Visually identify sprinkler modes for quality assurance.
Use flush function as needed depending on water quality.

GAIN LOTS, GIVE UP NOTHING.
SUPERIOR FLUSHING OPTIONS: Sequence to work debris through. It’s never advised to stick something in a nozzle — the 3NV flushes with a quick and simple turn of the nozzle. No tools necessary.
“ON” AND “OFF” CAN BE SELECTIVE: If you’re over-watering, or if you need to conserve water for a time, simply select the sprinklers you want to turn off. Consider the cost savings of having a built-in ball valve on every sprinkler!

OR SEAMLESS INTEGRATION INTO EXISTING SYSTEMS.
To gain the benefits of the new 3030 Series you simply need a new Nozzle & Body. Existing 3000 Series Cap, Plate, Regulator & Fittings integrate entirely. NOTE: Orbitor weight can be re-used but need new body/plate.
Since On, Off & Flush functions all take place without removing the nozzle, no more dropped or lost nozzles in the field!
A 3NV Dual Nozzle clip (with Hi-Flo, Lo-Flo differentiation) helps farmers adapt to differing watering needs such as crop establishment, chemigation or lowering water tables.
IN ORDER TO SELECT THE BEST PRODUCT FOR YOUR NEEDS CONSIDER THE FOLLOWING:

1. **AVAILABLE PRESSURE**
 Choose performance - save water and energy.

2. **DESIRED UNIFORMITY & THROW DISTANCE**
 Rotator provides highest uniformity possible.

3. **SOIL TYPES**
 See pages 16-17 for infiltration curves as they relate to application rates.
WIND CONDITIONS
Choose sprinkler with multi-trajectory plate options to fight the wind while also filling in the water pattern.

WINd CoNdItIoNs
Choose sprinkler with multi-trajectory plate options to fight the wind while also filling in the water pattern.

SPRAYHEAD
Multi-Trajectory Plates
Have Improved Performance

ORBITOR
No Drift or Drool & Less Debris Hang-up

UNIVERSAL
The U3030 Body is for use with Part-Circle 3030 options and Hose Drag Adapter.

WIDE THROw DISTANCE OF ROTATING STREAMS PROVIDES OPTIMAL (LOw) PRECIPITATION RATES
ROTATOR / 70’ (21.3 M) DIAM.
ORANGE PLATE / *36 NOZZLE @ 20 PSI (1.4 BAR)

WIDEST THROw ON DROP TUBES
WIDE THROw DISTANCE OF ROTATING STREAMS PROVIDES OPTIMAL (LOw) PRECIPITATION RATES
ROTATOR / 70’ (21.3 M) DIAM.
ORANGE PLATE / *36 NOZZLE @ 20 PSI (1.4 BAR)

SHORT THROw DISTANCE OF FIXED SPRAY PROVIDES HIGH PRECIPITATION RATES
SPRAY / 40’ (12.8 M) DIAM.
BLACK PLATE / *36 NOZZLE @ 10 PSI (0.7 BAR)
10 REASONS WHY ROTATOR® TECHNOLOGY REIGNS

1. 25+ YEARS FIELD-PROVEN
2. BEST IN CLASS AT GETTING WATER IN THE GROUND (PG 17)
3. MOUNTS UP TOP (PG 10) OR ON DROPS
4. WIDEST THROW DISTANCE AVAILABLE ON DROPS
5. HIGHEST UNIFORMITY

NELSON
The new Olive multi-trajectory plate is designed to maintain high uniformity at lower pressures than other Rotator configurations are able to offer. It can be used with the #12 nozzle through the #50 3TN and new 3NV nozzles. Operate between 10-15 psi (0.7-1.0 bar) and achieve throw diameters up to 58' (17.7 m).
CATERING TO CROP SPECIFIC NEEDS

NELSON ROTATOR® SPRINKLER TECHNOLOGY MOUNTED ON TOP OF CENTER PIVOTS IN STRONG CORN-PRODUCING AREAS HAS GENERATED EXCELLENT RESULTS IN RECENT YEARS.
ON TOP OF IT

THE R3030 ROTATOR® CAN OPERATE DOWN TO 15 PSI (1.0 BAR) WITH HIGH UNIFORMITY AND IMPRESSIVE WIND RESISTANCE, MADE POSSIBLE BY SPECIFICALLY ENGINEERED AND FINELY-TUNED ROTATING PLATES.

MANY IRRIGATORS PREFER THE SPINNER’S UNIQUE DROPLET CHARACTERISTICS.

Nelson has added a new plate to the Spinner product offering that gives irrigators another up-top option for center pivot irrigation. Nelson’s Pivot Spinner is known as a low-pressure alternative to fixed sprayheads, providing higher uniformity with better overlap and lower application rates. The Lime Plate was engineered for up-top usage and gives the Spinner increased throw with minimal crop interference.

The pressure range for the Lime Plate is 6-15 psi (0.4-1.0 bar). At 6 psi the minimum nozzle size is a *24 nozzle. At 10 and 15 psi the minimum nozzle size is a *14. Nelson recommends using a 10 psi pressure regulator. NOTE: Even if elevation changes do not require pressure regulators, you should consider them for their other advantages.

Rotator® / WHITE PLATE
15 - 30 PSI (1.0-2.0 bar)

Accelerator / NAVY PLATE
6 - 15 PSI (0.4-1.0 bar)

Spinner / LIME PLATE
6-15 PSI (0.4-1.0 bar)
Rotator®

10–50 psi (0.7–3.4 bar)
50–74' (15.2–22.6 m)

ACCELERATOR

6–15 psi (0.4–1 bar)
30–55' (9.1–16.8 m)

Spinner

10–20 psi (0.7–1.4 bar)
42–54' (12.8–16.5 m)

Greater Throw Radius. As a rotating type sprinkler the R3000 & R3030 Rotator® produce a wider pattern resulting in a lower application rate, reduced runoff and longer soak time.

Higher Uniformity. The Rotator greatly improves uniformity because of the increased overlap from adjacent sprinklers.

Reduced Wind Drift and Evaporative Loss. The Rotator more than meets the challenge of putting a rotating type sprinkler on drop tubes — down out of the wind — to minimize wind drift and evaporative loss.

Accelerator

A hybrid sprinkler using both Rotator® and Spinner technology, the Accelerator increases rotation speed as the nozzle size increases. This maximizes throw distance and minimizes evaporative losses at low flow rates. At the end of the system it transforms into a Spinner to lower application rates while treating the soil correctly.

Maximum Application Efficiency. Operating at 10 psi (0.7 BAR) the A3000 & A3030 maintain the lowest possible trajectory angle without sacrificing throw distance.

Spinner

The free-spinning action of the S3000 & S3030 Spinner provides a gentle, rain-like droplet for sensitive soils and crops.

Superior Uniformity at Low Pressure. A low pressure alternative to fixed spray-heads, the Spinner provides higher uniformity with better overlap and lower application rates.

No Mounting Restrictions. The Spinner operates without vibration. Retrofit on rigid, semi-rigid, or flexible drop hose assemblies.

Nozzle: 3TN or 3NV
Application Rate: Low
Nozzle: 3TN or 3NV
Application Rate: Low-Medium
Nozzle: 3TN or 3NV
Application Rate: Low-Medium
Throw Diameter, Pressure & Nozzle Range

<table>
<thead>
<tr>
<th>Color</th>
<th>Diameter (m)</th>
<th>Pressure (PSI)</th>
<th>Nozzle Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Up-Top U4-8’</td>
<td>0.74 m (22.6 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 14 NOZ. @ 15 PSI (1.0 BAR)</td>
</tr>
<tr>
<td>White Up-Top</td>
<td>0.74 m (22.6 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 14 NOZ. @ 15 PSI (1.0 BAR)</td>
</tr>
<tr>
<td>Green D4-8’</td>
<td>0.66 m (21.9 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 14 NOZ. @ 15 PSI (1.0 BAR)</td>
</tr>
<tr>
<td>Red D6-12’</td>
<td>0.66 m (21.9 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 14 NOZ. @ 15 PSI (1.0 BAR)</td>
</tr>
<tr>
<td>Orange Multi-trajectory</td>
<td>0.66 m (21.9 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 10 NOZ. @ 15 PSI (0.7 BAR)</td>
</tr>
<tr>
<td>Brown Multi-trajectory</td>
<td>0.66 m (21.9 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 10 NOZ. @ 15 PSI (0.7 BAR)</td>
</tr>
<tr>
<td>Olive Low Pressure</td>
<td>0.58 m (17.7 m)</td>
<td>15-30 PSI (1.0-2.0 BAR)</td>
<td>MAX. 15 NOZ. MIN. 10 NOZ. @ 15 PSI (0.7 BAR)</td>
</tr>
<tr>
<td>Blue up-top</td>
<td>0.74 m (22.6 m)</td>
<td>10-15 PSI (0.7-1.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 10 NOZ. @ 15 PSI (0.7 BAR)</td>
</tr>
<tr>
<td>White up-top</td>
<td>0.66 m (21.9 m)</td>
<td>10-15 PSI (0.7-1.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 10 NOZ. @ 15 PSI (0.7 BAR)</td>
</tr>
<tr>
<td>Gray spinner cap</td>
<td>0.38 m (1.2 m)</td>
<td>10-15 PSI (0.7-1.0 BAR)</td>
<td>MAX. 50 NOZ. MIN. 10 NOZ. @ 15 PSI (0.7 BAR)</td>
</tr>
</tbody>
</table>

The beige plate should be used on flexible drops, or those with at least 1 ft. (.3 m) of hose. The smaller nozzles will be more susceptible to plugging.
ORBITOR

6-20 psi (0.4-1.4 bar)
36-60' (11.0-18.3 m)

Streamlined Design. Featuring technology that eliminates the struts of a sprinkler body, Nelson’s new Pivot Orbitor provides outstanding uniformity and optimal droplets at low pressures (6-20 psi / 0.4-1.4 bar). Expect long wear life and durability in poor water conditions, because there are no sprinkler body struts for debris to hang up on.

Reduced Wind Drift and Evaporative Loss. Strutless sprinkler body design reduces droplet breakup, drift and drool.

Important! The Orbitor requires a minimum of 2' (0.6 M) of reinforced flexible hose in the mounting assembly.

Nozzle: 3TN or 3NV
Application Rate: Low-Medium

Sprayhead

6-40 psi (0.4-2.8 bar)
16-40' (4.9-12.2 m)

Germinate, Irrigate & Chemigate. The flip-over dual spray cap allows easy conversion of the spray pattern. Choose from spray plate options to germinate, irrigate, and chemigate.

“Low Energy Down in the Crop.” The sleek, crop-guarded body design provides durability for dragging the Sprayhead down in tall growing crops like corn.

Optional LEPA Accessories. The hose drag adapter allows simple conversion of the Sprayhead to a hose drag system. Both the D3000 and D3030 have “bubble” modes for LEPA. D3000 requires bubble clip – see page 15.

Nozzle: 3TN or 3NV
Application Rate: High

Trashbuster

Pressure & Throw Depends on Sprinkler Selection

Nozzle: 3TN or 3000FC
Application Rate: Low-High

Flow Control Nozzle. The Flow Control Nozzle (only available for 3000 Series) not only eliminates the need for pressure regulators, but also passes debris more easily. It is not to be used on flexible hose drop assemblies.

Body Designed for Wastewater. The open architecture design of the body allows for debris to pass through more easily, alleviating build up of material on the plate and body.

By Operating on Drop Tubes you can distribute effluent more days of the year, keep corrosive water off the pivot structure, eliminate excess wind/pathogen drift, and reduce odor. The Trashbuster can be configured into either a Spray or Rotator sprinkler.
THROW DIAMETER, PRESSURE & NOZZLE RANGE

- **Black Standard Angle**
 - 58’ diameter (17.7 M) at 6’ (1.8 M) mounting @ 15 PSI (1.0 BAR) *36 nozzles

- **Blue Low Angle**
 - 50’ diameter (15.2 M) at 6’ (1.8 M) mounting @ 15 PSI (1.0 BAR) *36 nozzles

- **Purple Small Droplet**
 - 47’ diameter (14.3 M) at 6’ (1.8 M) mounting @ 15 PSI (1.0 BAR) *36 nozzles

Important Mounting Information:
1. The Orbitor requires a minimum of 2’ (0.6 m) of reinforced flexible hose in the mounting assembly.
2. When using the Orbitor with the weighted cover, do not use any other conventional weight styles instead of, or in addition to, the Orbitor weight.
3. When using the Orbitor with the plastic cover, an inline weight is required. Use Nelson Slim Weights (page 25) or 3/4” NPT threaded weights. Slip weights require the Nelson Clamp Saver (page 25).
4. Always be sure that the Orbitor Weight, Slim Weight, or threaded weight is securely tightened.
5. Always be sure that all components in the mounting assembly and the Orbitor are securely tightened. Use new* Nelson pressure regulators and fittings.
6. If ¾” ball valves are used, use metal nipples or Nelson P/N-1291 plastic nipples.

ACCESSORIES

- 3030 Series Part-Circle Spray & Hose Drag Adapter
- Both require universal body - 3000 series does not
- Part Circle Spray *9834-001
- Bubbler Attachment (LEPA) *10577 for D3000 Only
- Hose Drag Adapter *9427

ROTATOR® Configuration
- Blue Rotator Cap

Sprayhead Configuration
- Blue
- Green
- Purple

3000FC Nozzle
- *1016-XXX requires a rigid drop and 25 PSI (1.7 BAR) minimum.
TREAT THE SOIL RIGHT.

WE’D NEVER CRITICIZE MOTHER NATURE, BUT SOMETIMES “RAIN-LIKE” IRRIGATION IS NOT THE BEST FOR SOIL INTEGRITY. SOIL TEXTURES REACT DIFFERENTLY TO DROPLET SIZE AND VELOCITY (INTENSITY) AND IT’S IMPORTANT TO UNDERSTAND HOW A “WET / REST” CYCLE CAN BE VERY BENEFICIAL TO A FIELD. ROTATING STREAMS OVER A WIDE PATTERN HAVE PROVEN TO BE THE BEST POSSIBLE WAY TO TREAT THE SOIL.

THE RATE AT WHICH A CENTER PIVOT APPLIES WATER INCREASES WITH THE HIGHER FLOW DEMANDS REQUIRED AT THE OUTER PORTION OF A CENTER PIVOT. BY INCREASING THE WETTED THROW DISTANCE OF THE SPRINKLER, THE RATE AT WHICH WATER IS APPLIED CAN BE REDUCED TO MATCH THE SOIL’S INFILTRATION RATE. LOOK AT A TYPICAL INFILTRATION CURVE BELOW.

*End of 1/4 mile (402 m) system at 8 gpm/acre (4.5 m³/hr/ha) and travel speed 5 fpm (1.5 m/min)
WITHOUT SPRINKLER PERFORMANCE THAT CAN APPLY WATER AT AN APPLICATION RATE THAT MORE CLOSELY MATCHES THE INFILTRATION RATE OF THE SOIL, THE EFFICIENCY GAINED WITH DROPS — AND MONEY SAVED WITH LOW PRESSURE — IS SOON LOST TO RUNOFF.

Average application rate (AAR) is the rate of water application over the wetted area. It is an average value assuming uniformity within the wetted area. Pivot average application rates increase with the higher flow demands required at the outer portion of a center pivot. Comparably, in analyzing different sprinkler options, superior throw distance yields lower average application rates.

TYPICAL INFILTRATION CURVES COMBINED WITH CENTER PIVOT APPLICATION RATE

ROTATOR®
Rotating streams produce a low instantaneous application rate because the water is spread out over a wide throw diameter in a natural wet/rest cycle that permits easy infiltration.

SPRAY
Fixed streams produce a high instantaneous application rate within a small throw diameter.
LOW ENERGY, LOW ELEVATION / “LE” SOLUTIONS FOR PIVOTS

IF YOU'RE LOOKING FOR “LE” SOLUTIONS — LOOK FOR THE NELSON ADVANTAGE.

HOSE DRAG, BUBBLER AND SPRAY TECHNOLOGY QUALIFY AS LEPA AND LESA SO LONG AS THE OUTLET SPACINGS ARE TIGHT AND THE DEVICES DELIVER WATER VERY NEAR TO OR ON THE SOIL SURFACE, WITH LITTLE ENERGY IN ORDER TO HAVE VERY LOW EVAPORATION IN THE AIR. Nelson's U3030 can be used for both part-circle applications and hose drag applications. The Sprinkler Converter is a great device to get a 3-in-1 sprinkler. Choose between functions: bubble, spray or irrigate with rotating streams depending on water constraints. While offering the advantages of low pressure operation and minimal water loss due to canopy evaporation and wind drift, LEPA is limited in its areas of application. Limitations include tight soils, sloping fields, and inner spans. Due to the very low pressure used, it is necessary to manage the system pressure and monitor it closely. Pressure regulators are generally a necessity for good uniformity of LEPA nozzle discharge.
There are other low energy/elevation options beyond LEPA and LESA. Consider rotating sprinklers in the 6-10 psi (0.4-0.7 bar) range. The Rotator® and Accelerator create a wide wetted pattern for the best soil infiltration and optimal droplet energy.
An accurate nozzle chart is essential to center pivot irrigation. Nelson has developed a highly-sophisticated design tool for dealers and distributors to determine nozzle sizing after entering system specs and selecting pivot spans, fittings, sprinklers and regulators. Irrigating in a circle is complex — make sure you use the necessary tools to get the job done right the first time.
The nozzle sizing system is based on 128th inch increments, e.g. 3TN/3NV Nozzle *26 has an orifice diameter of 26/128th inches while 3TN/3NV Nozzle *27 has an orifice diameter of 27/128th inches. For 3TN Nozzles, the odd-numbered nozzles have a color box around the number marking. This color box denotes the color of the next larger nozzle size. The odd-numbered 3NV Nozzles have a scalloped edge rather than secondary coloring.

PERFORMANCE DATA

The nozzle sizing system is based on 128th inch increments, e.g. 3TN/3NV Nozzle *26 has an orifice diameter of 26/128th inches while 3TN/3NV Nozzle *27 has an orifice diameter of 27/128th inches. For 3TN Nozzles, the odd-numbered nozzles have a color box around the number marking. This color box denotes the color of the next larger nozzle size. The odd-numbered 3NV Nozzles have a scalloped edge rather than secondary coloring.

NOZZLE #

	COLOR BOX (3tn)	
9	LIGHT BLUE	BEIGE
10	BEIGE	
11	BEIGE	
12	BEIGE	
13	BEIGE	
14	LIME	
15	LAVENDER	
16	LAVENDER	
17	GRAY	
18	GRAY	
19	GRAY	

Nozzle Chart

This flow data was obtained under ideal test conditions and may be adversely affected by poor hydraulic entrance conditions, turbulence or other factors. Nelson Irrigation makes no representation regarding sprinkler flow rate accuracy under various plumbing and drop pipe conditions.

Tel: +1 509.525.7660 / Fax: +1 509.525.7907 / nelsonirrigation.com / info@nelsonirrigation.com
IN 1994, NELSON INTRODUCED 3000 SERIES PIVOT PRODUCTS.

THE 3TN NOZZLE SYSTEM IS AT THE CENTER OF THIS LINE OF PRODUCTS. EACH SPRINKLER IS MADE UP OF A CAP, PLATE, BODY AND NOZZLE. THE 3TN NOZZLE IS INTERCHANGEABLE WITH ALL 3000 SERIES SPRINKLERS. A VARIETY OF CONNECTION DEVICES ARE AVAILABLE TO LINK THE SPRINKLER WITH A HOSE OR RIGID DROP. IN 2015, NELSON RELEASED THE 3030 SERIES, WITH A DIFFERENT NOZZLE/BODY SYSTEM BUT THE SAME PLATE/CAP/ADAPTER OPTIONS.

SEE DETAILS ON PAGES 4-7.
3TN NOZZLE
FOR 3000 SERIES

3NV NOZZLE
FOR 3030 SERIES

ADAPTERS

NOZZLES

BODIES

PLATES

CAPS

ORBITOR CONFIGURATION SHOWN ON PAGE 15
SMART OPTIONS FOR COMMON CHALLENGES

SOLVE WHEEL TRACK PROBLEMS

Excessive water in the wheel tracks can cause slippage of the tires, causing the system to slow down in wet areas and steep slopes — increasing the application depth in relation to other parts of the fields. Deep wheel track ruts are also detrimental to the equipment and harvesting efficiency.

Nelson part circle sprinklers direct the water off of the pivot structure at the towers and away from the wheel track to prevent deep wheel track ruts. Overall field uniformity can be maintained by preventing excessive slippage of the tires, and maintaining a uniform speed of travel.

PC-R3030 ROTATOR®

PERFORMANCE
- 180° Arc (varies slightly with flow rate)
- Wide Throw
- High Uniformity
- Wind Fighting Pattern

OPERATING SPECS
- 15-25 psi (1-1.4 bar) for *14-40 Nozzles
- 15-30 psi (1-2 bar) for *40-50 Nozzles
- 11’ Spacing Limit
- Mount on a rigid drop assembly or IACO Hose Boom Assembly. Go to www.boombacks.com.

Part-Circle Spinner & Sprayhead also available for different pressure needs and stream characteristics.

PART-CIRCLE SPRINKLERS CAN BE INSTALLED IN A VARIETY OF CONFIGURATIONS

BOOMBACKS
INSTALLATIONS ON BOOMBACKS MINIMIZE THE COMPROMISE IN UNIFORMITY THAT OCCURS WHEN PART-CIRCLE DEVICES ARE UTILIZED.

STRAIGHT DROPS
INSTALLATIONS ON STRAIGHT DROPS REQUIRE CAREFUL ADJUSTMENT OF THE ORIENTATION.
NOZZLE CLIPS
Nelson Pivot Sprinklers can be equipped with two or three nozzles using the 3TN Dual Nozzle Clip or 3TN Triple Nozzle Clip. The 3030 Series has a dual nozzle clip. These devices allow you to precisely match crop water requirements through the season. During germination, lower system flow rates lessen the intensity of water droplets to maintain proper soil structure and reduce runoff. Adjust the system flow as crop water requirements change.

- CHANGE SYSTEM FLOW QUICKLY AND ACCURATELY.
- NO MORE FUMBLING WITH OR DROPPING NOZZLES.
- MEET DIFFERING IN-SEASON DEMANDS:
 - GERMINATE AT LO, IRRIGATE AT HI
 - IRRIGATE AT HI, CHEMIGATE AT LO

NOTE: Do not operate in down-in-the-crop applications, or with the Chemigation Spray Plate.

WEIGHTS FOR DROP HOSE
The 1 lb. modular weight (*10130) fits onto the pressure regulator, but if pressure regulators are not used, the weight fits directly on the body of the sprinkler (3000 Series only and not to be used with the Orbitor). The 1 lb. Modular Pivot Weight is designed for sprinklers operating at 20 PSI (1.4 BAR) and below.

The new in-line “slim” weight is for use with 3000 Series & 3030 Series Sprinklers. It’s available in both 0.85 lb (*11395-001) and 1 lb (*11395) options. This low profile zinc weight fits directly into flexible drop hose secured with a clamp, above a Nelson regulator and/or sprinkler. This includes the plastic cover versions of the O3000 and O3030 at 6, 10 or 15 psi (0.4, 0.7 or 1 bar) where the regulator must be installed directly onto the slim weight. No additional weight is allowed with the Orbitor.

Fittings

USER-FRIENDLY HOSE BARB FITTINGS. Easy installation into 3/4” flexible hose. Eliminates additional fittings. The convenience of the 15/16” Hex Adapter is unique to Nelson fittings. Secure fittings using 15/16” deep well socket or open end wrench.

CLAMP SAVER
USE CLAMP SAVER WHEN INSTALLING ORBITORS ON A PIVOT WITH EXISTING POLY SLIP WEIGHTS. This simple device placed over clamps on drop hose beneath poly slip weights protects the clamp from the “action” or natural vibration on Orbitor systems. This is a great solution when an irrigator is retrofitting a pivot that already has slip weights with the Orbitor sprinkler. Only the plastic cover version (6-10 psi / 0.4-0.7 bar) O3000 or O3030 can be used with poly slip weights.

Tel: +1 509.525.7660 / Fax: +1 509.525.7907
nelsonirrigation.com / info@nelsonirrigation.com
PRECISION ACCURACY IN TOUGH FIELD ENVIRONMENTS

The function of a pressure regulator in center pivot sprinkler design is to fix a varying inlet pressure to a set outlet pressure, regardless of changes in the system pressure due to hydraulic conditions, elevation changes and pumping scenarios.

The benefits include a uniform depth of water application, controlled sprinkler performance (droplet size and throw distance), and flexibility in system operation.

HI-FLO SHOWN WITH 3/4" FNPT X 3/4" FNPT CONNECTION

SQUARE THREAD CONNECTION

Integral adapter connects directly into all Nelson 3000 & 3030 Series Sprinklers.
HOW MUCH ELEVATION CHANGE IS ACCEPTABLE? LESS THAN 10% FLOW VARIATION IS A GOOD RULE OF THUMB.

This graph is based on the elevation limit which will cause a flow variation of ten percent or more. If the elevation change from the lowest point is above the line then a flow variation of more than 10 percent will occur. Notice the lower design pressure allows less elevation change before pressure regulators are recommended.

NOTE: Even if elevation changes do not require pressure regulators, you should consider them for their other advantages.

TECHNICAL TIPS FOR REGULATING SYSTEMS

IMPORTANT: Allow approximately 5 PSI (.35 BAR) extra pressure in order for the regulator to function properly. For example, the minimum design pressure for a 20 PSI (1.4 BAR) pressure regulator is 25 PSI (1.7 BAR).

IMPORTANT: If your system is designed with Nelson sprinklers, use Nelson Pressure Regulators. Individual manufacturers’ pressure regulator performance varies. Interchanging could result in inaccurate nozzle selection.

<table>
<thead>
<tr>
<th>Pressure (PSI)</th>
<th>UNI-FLO</th>
<th>HI-FLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 PSI (0.4 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
<tr>
<td>10 PSI (0.7 bar)</td>
<td>9491-001</td>
<td>9071-001</td>
<td>9491-002</td>
<td>9071-002</td>
<td>9491-003</td>
<td>9071-003</td>
<td>9491-004</td>
<td>9071-004</td>
<td>9491-005</td>
<td>9071-005</td>
<td>9491-006</td>
<td>9071-006</td>
<td>9491-007</td>
<td>9071-007</td>
<td>9491-008</td>
<td>9071-008</td>
</tr>
<tr>
<td>15 PSI (1.0 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
<tr>
<td>20 PSI (1.4 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
<tr>
<td>25 PSI (1.7 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
<tr>
<td>30 PSI (2.1 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
<tr>
<td>40 PSI (2.8 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
<tr>
<td>50 PSI (3.4 bar)</td>
<td>9572-001</td>
<td>9611-001</td>
<td>9572-002</td>
<td>9611-002</td>
<td>9572-003</td>
<td>9611-003</td>
<td>9572-004</td>
<td>9611-004</td>
<td>9572-005</td>
<td>9611-005</td>
<td>9572-006</td>
<td>9611-006</td>
<td>9572-007</td>
<td>9611-007</td>
<td>9572-008</td>
<td>9611-008</td>
</tr>
</tbody>
</table>

PATENTED PLUG RESISTANT DESIGN
Superior plug-resistance with a single-strut seat design in both the Hi-Flo and Universal Flo models.

EXTENDED PERFORMANCE & PRECISION ACCURACY
Precision components coupled with an internally lubricated o-ring minimize frictional drag and hysteresis.

Statement of Expected Performance. Nelson Pressure Regulators are accurate to 6% of the manufacturer’s coefficient of variation.
NELSON HAS BEEN IN THE END OF PIVOT BUSINESS FOR A LOT OF YEARS NOW. AS TIMES ARE CHANGING - AND THE NEED FOR LOWER PRESSURE OPTIONS IS EVIDENT - WE’VE ADDED TO OUR OFFERING. THERE’S EVERYTHING FROM 15–80 PSI (1.0–5.5 BAR), 40–120 FEET (12–37 M), AND 28–300 GPM (6–680 M³/H).
END OF PIVOT SPRINKLER OPTIONS FOR SHORT & LONG RADIUS OF THROW

R55
40-55’ (12-16.8 m) @ 15-40 PSI (1.0-2.8 bar)
28 gpm-84 gpm (6.2 m³/h-19.1 m³/h)

R75
50-70’ (15-21 m) @ 25-60 PSI (1.7-4.2 bar)
24 gpm-70 gpm (5.4 m³/h-15.4 m³/h)

SR75
70-90’ (21-28 m) @ 25-80 PSI (1.7-5.5 bar)
30 gpm-160 gpm (6.8 m³/h-36.3 m³/h)

SR100
90-120’ (28-37 m) @ 40-80 PSI (2.8-5.5 bar)
50 gpm-300 gpm (11.4 m³/h-68.2 m³/h)

TYPICAL ADDED ACREAGE ON A 1/4 MILE PIVOT

Up to 10 acres (4.0 ha) irrigating full circle
Up to 6 acres (2.4 ha) corners only

Up to 13 acres (5.3 ha) irrigating full circle
Up to 7 acres (2.8 ha) corners only

Up to 17 acres (6.9 ha) irrigating full circle
Up to 9 acres (3.6 ha) corners only

Up to 23 acres (9.3 ha) irrigating full circle
Up to 11 acres (4.5 ha) corners only

Tel: +1 509.525.7660 / Fax: +1 509.525.7907 / nelsonirrigation.com / info@nelsonirrigation.com
ADDITIONAL ACREAGE AT LOW PRESSURE

NO OTHER END OF PIVOT SPRINKLER WORKS IN THE LOW PRESSURE RANGE OF 15-40 PSI (1-2.8 BAR) AND PROVIDES UP TO 10 ADDITIONAL IRRIGATED ACRES (ON A 1/4 MILE PIVOT).

The R55 End of Pivot Sprinkler is changing the way farmers irrigate with center pivots. It can be used to pick up added acreage both throughout the full revolution of the pivot or just in the corners, depending on site specifics and irrigator preferences. It can be used in conjunction with a higher volume Big Gun® Sprinkler – or on its own. The R55 (with blue plate) is to be mounted in an upright position at the end of the overhang.

The New R55i, with a specially engineered gray plate, has been made for inverted applications. This configuration is found to be easier to plumb – and some say it’s effective in helping manage debris that collects at the end of the system. Please note that radius is typically less for the inverted, gray plate than for the blue plate. The R55/R55i can always remain on, turn on via a solenoid on an 800 series valve or work under the logic of a linked control system with a SR100/800P Valve or SRNV100 (Nozzle Valve).
R55

Gain up to 10 acres (4.0 ha) irrigating full circle and up to 6 acres (2.4 ha) corners only on a 1/4 mile pivot.

PERFORMANCE DATA

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*52 Purple Nozzle</td>
<td>*60 Red Nozzle</td>
<td>*70 Yellow Nozzle</td>
<td>*80 Green Nozzle</td>
<td>*90 Blue Nozzle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>18.3</td>
<td>40</td>
<td>27.7</td>
<td>41</td>
<td>36.6</td>
<td>42</td>
<td>45.2</td>
<td>42</td>
<td>52.0</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20.9</td>
<td>42</td>
<td>31.8</td>
<td>44</td>
<td>41.8</td>
<td>45</td>
<td>51.7</td>
<td>45</td>
<td>59.7</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>23.4</td>
<td>45</td>
<td>35.5</td>
<td>48</td>
<td>46.7</td>
<td>48</td>
<td>57.7</td>
<td>49</td>
<td>66.7</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>25.8</td>
<td>46</td>
<td>38.9</td>
<td>49</td>
<td>51.1</td>
<td>50</td>
<td>63.1</td>
<td>51</td>
<td>73.2</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>27.9</td>
<td>47</td>
<td>42.1</td>
<td>50</td>
<td>55.1</td>
<td>51</td>
<td>68.2</td>
<td>53</td>
<td>79.0</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>30.0</td>
<td>47</td>
<td>44.9</td>
<td>50</td>
<td>58.8</td>
<td>51</td>
<td>72.7</td>
<td>54</td>
<td>84.3</td>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METRIC UNITS

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*52 Purple Nozzle</td>
<td>*60 Red Nozzle</td>
<td>*70 Yellow Nozzle</td>
<td>*80 Green Nozzle</td>
<td>*90 Blue Nozzle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>4.1</td>
<td>11.9</td>
<td>6.2</td>
<td>12.2</td>
<td>8.2</td>
<td>12.5</td>
<td>10.1</td>
<td>12.5</td>
<td>11.6</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>5.0</td>
<td>13.1</td>
<td>7.5</td>
<td>14.0</td>
<td>9.9</td>
<td>14.0</td>
<td>12.2</td>
<td>14.3</td>
<td>14.1</td>
<td>14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>5.7</td>
<td>14.0</td>
<td>8.7</td>
<td>14.9</td>
<td>11.4</td>
<td>15.2</td>
<td>14.1</td>
<td>15.5</td>
<td>16.3</td>
<td>16.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>6.5</td>
<td>14.3</td>
<td>9.7</td>
<td>15.2</td>
<td>12.7</td>
<td>15.5</td>
<td>15.7</td>
<td>16.2</td>
<td>18.3</td>
<td>16.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td>6.8</td>
<td>14.3</td>
<td>10.2</td>
<td>15.2</td>
<td>13.3</td>
<td>15.5</td>
<td>16.5</td>
<td>16.5</td>
<td>19.1</td>
<td>16.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R55 performance data has been obtained under ideal test conditions and may be adversely affected by wind, poor hydraulic entrance conditions or other factors. Test riser height of 9 feet (2.7 meters) above measurement surface. No representation regarding droplet condition, uniformity, application rate, or suitability for a particular application is made herein.

UPRIGHT MOUNTING

OPERATING PRESSURE MUST BE 15-40 PSI (1-2.8 BAR)

POOR ENTRANCE CONDITIONS DIMINISH PERFORMANCE.

INVERTED MOUNTING

OPERATING PRESSURE MUST BE 15-40 PSI (1-2.8 BAR)

POOR ENTRANCE CONDITIONS DIMINISH PERFORMANCE.
INTRODUCING THE NEW R75 END OF PIVOT SPRINKLER. THIS VERSATILE, HIGH-UNIFORMITY SPRINKLER IS BASED ON FIELD-PROVEN ROTATOR® TECHNOLOGY. THE R75 AND R75LP (LOW PRESSURE OPTION) HELP FILL IN THE CORNERS AND GAIN ADDED GROUND ... UP TO 70 FEET (21 M).

R75
40-60 psi (2.8-4.0 bar)

R75LP
25-40 psi (1.7-2.8 bar)
PERFORMANCE DATA

Gain up to 13 acres (5.3 ha) irrigating full circle and up to 7 acres (2.8 ha) corners only on a 1/4 mile pivot.

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>52 (13/32”)</th>
<th>56 (7/16”)</th>
<th>60 (15/32”)</th>
<th>64 (1/2”)</th>
<th>68 (17/32”)</th>
<th>72 (9/16”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>23.6</td>
<td>49.0</td>
<td>27.3</td>
<td>51.0</td>
<td>31.2</td>
<td>53.0</td>
</tr>
<tr>
<td>30</td>
<td>26.0</td>
<td>52.0</td>
<td>29.8</td>
<td>53.0</td>
<td>34.1</td>
<td>54.0</td>
</tr>
<tr>
<td>35</td>
<td>28.0</td>
<td>53.0</td>
<td>32.4</td>
<td>55.0</td>
<td>36.9</td>
<td>55.0</td>
</tr>
<tr>
<td>40</td>
<td>30.0</td>
<td>54.0</td>
<td>34.6</td>
<td>56.0</td>
<td>39.7</td>
<td>56.0</td>
</tr>
<tr>
<td>40</td>
<td>30.0</td>
<td>57.0</td>
<td>34.6</td>
<td>59.0</td>
<td>39.7</td>
<td>61.0</td>
</tr>
<tr>
<td>45</td>
<td>31.7</td>
<td>58.0</td>
<td>36.8</td>
<td>60.0</td>
<td>42.0</td>
<td>62.0</td>
</tr>
<tr>
<td>50</td>
<td>33.6</td>
<td>59.0</td>
<td>38.8</td>
<td>61.0</td>
<td>44.4</td>
<td>63.0</td>
</tr>
<tr>
<td>55</td>
<td>35.3</td>
<td>59.0</td>
<td>40.7</td>
<td>62.0</td>
<td>46.6</td>
<td>64.0</td>
</tr>
<tr>
<td>60</td>
<td>36.8</td>
<td>59.0</td>
<td>42.7</td>
<td>62.0</td>
<td>48.8</td>
<td>65.0</td>
</tr>
</tbody>
</table>

METRIC UNITS

Gain up to 13 hectares (5.3 ha) irrigating full circle and up to 7 hectares (2.8 ha) corners only on a 1/4 km pivot.

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>52 (13/32”)</th>
<th>56 (7/16”)</th>
<th>60 (15/32”)</th>
<th>64 (1/2”)</th>
<th>68 (17/32”)</th>
<th>72 (9/16”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>5.4</td>
<td>14.9</td>
<td>6.3</td>
<td>15.5</td>
<td>7.1</td>
<td>16.2</td>
</tr>
<tr>
<td>2.00</td>
<td>5.8</td>
<td>15.5</td>
<td>6.7</td>
<td>16.2</td>
<td>7.6</td>
<td>16.5</td>
</tr>
<tr>
<td>2.50</td>
<td>6.4</td>
<td>16.5</td>
<td>7.5</td>
<td>16.8</td>
<td>8.5</td>
<td>16.8</td>
</tr>
<tr>
<td>2.75</td>
<td>6.8</td>
<td>16.5</td>
<td>7.8</td>
<td>17.1</td>
<td>9.0</td>
<td>17.1</td>
</tr>
<tr>
<td>2.75</td>
<td>6.8</td>
<td>17.4</td>
<td>7.8</td>
<td>18.0</td>
<td>9.0</td>
<td>18.6</td>
</tr>
<tr>
<td>3.00</td>
<td>7.1</td>
<td>17.7</td>
<td>8.2</td>
<td>18.3</td>
<td>9.4</td>
<td>18.9</td>
</tr>
<tr>
<td>3.50</td>
<td>7.7</td>
<td>18.0</td>
<td>8.9</td>
<td>18.6</td>
<td>10.2</td>
<td>19.2</td>
</tr>
<tr>
<td>4.00</td>
<td>8.2</td>
<td>18.0</td>
<td>9.5</td>
<td>18.9</td>
<td>10.9</td>
<td>19.8</td>
</tr>
</tbody>
</table>

R75/R75LP performance data has been obtained under ideal test conditions and may be adversely affected by wind, poor hydraulic entrance conditions or other factors. Test riser height of 9 feet (2.7 meters) above measurement surface. No representation regarding droplet condition, uniformity, application rate, or suitability for a particular application is made herein.
OLD SCHOOL IS STILL IN SESSION

This low angle, part circle pivot end gun sprinkler has been designed to meet the demanding conditions of pivot end gun operation where the flow rate and distance of throw required is less than that of big gun® sprinklers. An optional diffuser is available for low pressure systems.

P85AS
20 GPM-125 GPM
(4.5 M³/H-28.4 M³/H)

Performance Data (US Units)

Gain up to 15 acres irrigating full circle and up to 8 acres corners only on a 1/4 mile pivot.

P85AS (Part Circle)

<table>
<thead>
<tr>
<th>Base PSI</th>
<th>11/32"</th>
<th>3/8"</th>
<th>13/32"</th>
<th>7/16"</th>
<th>15/32"</th>
<th>1/2"</th>
<th>17/32"</th>
<th>9/16"</th>
<th>19/32"</th>
<th>5/8"</th>
<th>7/32"</th>
<th>11/16"</th>
<th>13/32"</th>
<th>5/8"</th>
<th>7/32"</th>
<th>11/16"</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>15.4</td>
<td>48</td>
<td>18.2</td>
<td>49</td>
<td>21.3</td>
<td>51</td>
<td>23.7</td>
<td>52</td>
<td>27.9</td>
<td>53</td>
<td>31.4</td>
<td>55</td>
<td>35.4</td>
<td>56</td>
<td>39.7</td>
<td>57</td>
</tr>
<tr>
<td>30</td>
<td>18.9</td>
<td>55</td>
<td>22.4</td>
<td>56</td>
<td>26.2</td>
<td>58</td>
<td>29.5</td>
<td>60</td>
<td>34.4</td>
<td>62</td>
<td>38.9</td>
<td>63</td>
<td>43.7</td>
<td>64</td>
<td>49.0</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>21.8</td>
<td>61</td>
<td>26.0</td>
<td>62</td>
<td>30.5</td>
<td>64</td>
<td>34.5</td>
<td>66</td>
<td>39.9</td>
<td>68</td>
<td>45.0</td>
<td>69</td>
<td>50.7</td>
<td>71</td>
<td>57.0</td>
<td>72</td>
</tr>
<tr>
<td>50</td>
<td>24.6</td>
<td>64</td>
<td>29.1</td>
<td>66</td>
<td>34.1</td>
<td>68</td>
<td>38.9</td>
<td>70</td>
<td>44.7</td>
<td>71</td>
<td>50.5</td>
<td>73</td>
<td>56.8</td>
<td>75</td>
<td>63.4</td>
<td>76</td>
</tr>
<tr>
<td>60</td>
<td>27.0</td>
<td>67</td>
<td>32.1</td>
<td>69</td>
<td>37.6</td>
<td>71</td>
<td>43.0</td>
<td>73</td>
<td>49.3</td>
<td>75</td>
<td>55.7</td>
<td>76</td>
<td>62.5</td>
<td>78</td>
<td>70.0</td>
<td>80</td>
</tr>
<tr>
<td>70</td>
<td>29.0</td>
<td>69</td>
<td>34.8</td>
<td>72</td>
<td>40.7</td>
<td>74</td>
<td>46.7</td>
<td>76</td>
<td>53.2</td>
<td>78</td>
<td>60.4</td>
<td>79</td>
<td>67.7</td>
<td>81</td>
<td>75.8</td>
<td>83</td>
</tr>
<tr>
<td>80</td>
<td>31.0</td>
<td>72</td>
<td>37.3</td>
<td>74</td>
<td>43.7</td>
<td>76</td>
<td>50.0</td>
<td>78</td>
<td>57.0</td>
<td>80</td>
<td>64.7</td>
<td>82</td>
<td>72.5</td>
<td>84</td>
<td>81.3</td>
<td>85</td>
</tr>
<tr>
<td>90</td>
<td>33.2</td>
<td>74</td>
<td>39.4</td>
<td>76</td>
<td>46.2</td>
<td>78</td>
<td>52.9</td>
<td>81</td>
<td>60.8</td>
<td>82</td>
<td>68.5</td>
<td>84</td>
<td>76.8</td>
<td>86</td>
<td>86.3</td>
<td>88</td>
</tr>
<tr>
<td>100</td>
<td>35.0</td>
<td>76</td>
<td>41.5</td>
<td>78</td>
<td>48.8</td>
<td>80</td>
<td>55.8</td>
<td>83</td>
<td>64.0</td>
<td>85</td>
<td>72.6</td>
<td>87</td>
<td>81.0</td>
<td>88</td>
<td>90.9</td>
<td>90</td>
</tr>
</tbody>
</table>

Data gathered from sprinkler on 12’ riser — no wind.
PERFORMANCE DATA (METRIC UNITS)

P85AS (PART CIRCLE)

Gain up to 6 hectares irrigating full circle and up to 3 hectares corners only on a 400 m pivot.

<table>
<thead>
<tr>
<th>Base bar</th>
<th>8.7 mm</th>
<th>9.5 mm</th>
<th>10.3 mm</th>
<th>11.1 mm</th>
<th>11.9 mm</th>
<th>12.7 mm</th>
<th>13.5 mm</th>
<th>14.3 mm</th>
<th>15.1 mm</th>
<th>15.9 mm</th>
<th>16.7 mm</th>
<th>17.5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>3.6</td>
<td>15.0</td>
<td>4.3</td>
<td>15.5</td>
<td>5.1</td>
<td>16.0</td>
<td>5.7</td>
<td>16.5</td>
<td>6.6</td>
<td>17.0</td>
<td>7.5</td>
<td>17.5</td>
</tr>
<tr>
<td>2</td>
<td>4.2</td>
<td>16.5</td>
<td>5.0</td>
<td>17.0</td>
<td>5.9</td>
<td>17.5</td>
<td>6.6</td>
<td>18.0</td>
<td>7.7</td>
<td>18.5</td>
<td>8.7</td>
<td>19.0</td>
</tr>
<tr>
<td>2.5</td>
<td>4.7</td>
<td>17.5</td>
<td>5.6</td>
<td>18.0</td>
<td>6.6</td>
<td>18.5</td>
<td>7.4</td>
<td>19.0</td>
<td>8.6</td>
<td>19.5</td>
<td>9.7</td>
<td>20.0</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>18.5</td>
<td>6.2</td>
<td>19.0</td>
<td>7.2</td>
<td>19.5</td>
<td>8.2</td>
<td>20.5</td>
<td>9.5</td>
<td>21.0</td>
<td>10.7</td>
<td>21.0</td>
</tr>
<tr>
<td>3.5</td>
<td>5.6</td>
<td>19.5</td>
<td>6.7</td>
<td>20.0</td>
<td>7.8</td>
<td>20.5</td>
<td>8.9</td>
<td>21.5</td>
<td>10.2</td>
<td>22.0</td>
<td>11.6</td>
<td>22.0</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>20.5</td>
<td>7.2</td>
<td>21.0</td>
<td>8.4</td>
<td>21.5</td>
<td>9.5</td>
<td>22.0</td>
<td>11.0</td>
<td>22.5</td>
<td>12.4</td>
<td>23.0</td>
</tr>
<tr>
<td>4.5</td>
<td>6.4</td>
<td>21.0</td>
<td>7.6</td>
<td>21.5</td>
<td>8.9</td>
<td>22.0</td>
<td>10.2</td>
<td>23.0</td>
<td>11.7</td>
<td>23.5</td>
<td>13.2</td>
<td>24.0</td>
</tr>
<tr>
<td>5</td>
<td>6.7</td>
<td>21.5</td>
<td>8.0</td>
<td>22.0</td>
<td>9.4</td>
<td>23.0</td>
<td>10.8</td>
<td>23.5</td>
<td>12.3</td>
<td>24.0</td>
<td>13.9</td>
<td>24.5</td>
</tr>
<tr>
<td>5.5</td>
<td>7.1</td>
<td>22.0</td>
<td>8.4</td>
<td>22.5</td>
<td>9.9</td>
<td>23.5</td>
<td>11.3</td>
<td>24.0</td>
<td>12.9</td>
<td>25.0</td>
<td>14.7</td>
<td>25.0</td>
</tr>
<tr>
<td>6</td>
<td>7.4</td>
<td>22.5</td>
<td>8.8</td>
<td>23.0</td>
<td>10.3</td>
<td>24.0</td>
<td>11.9</td>
<td>24.5</td>
<td>13.5</td>
<td>25.0</td>
<td>15.3</td>
<td>25.5</td>
</tr>
<tr>
<td>6.5</td>
<td>7.7</td>
<td>22.5</td>
<td>9.2</td>
<td>23.5</td>
<td>10.8</td>
<td>24.0</td>
<td>12.4</td>
<td>25.0</td>
<td>14.1</td>
<td>25.5</td>
<td>16.0</td>
<td>26.0</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>23.0</td>
<td>9.5</td>
<td>23.5</td>
<td>11.2</td>
<td>24.5</td>
<td>12.9</td>
<td>25.0</td>
<td>14.7</td>
<td>25.5</td>
<td>16.6</td>
<td>26.0</td>
</tr>
</tbody>
</table>

Data gathered from sprinkler on 0.3 m riser — no wind.
STILL AROUND FOR A REASON

THE PREFERRED CHOICE FOR TOUGH APPLICATIONS

SET IT AND FORGET IT—SIMPLE ADJUSTMENT ALLOWS ARC SETTING TO WITHIN 1 DEGREE

SR SERIES HAS THE SAME SLOW FORWARD & REVERSE SPEEDS IMPROVING STABILITY / UNIFORMITY

DURABLE & RELIABLE WITH ENGINEERED SIMPLICITY

NEELSON

THE LEADER IN QUALITY, PERFORMANCE & SUPPORT
SR75
30 GPM–160 GPM (6.8 M³/H–36.3 M³/H)
WITH PROVEN DEPENDABILITY, PERFORMANCE, LONG WEAR LIFE AND REPAIRABILITY KNOWN FROM BIG GUN® SPRINKLERS, THE 18 DEGREE SR75 IS AN AFFORDABLE BIG GUN OPTION THAT PERFORMS WELL AT LOW PRESSURES.

SR100
50 GPM–300 GPM (11.4 M³/H–68.2 M³/H)
THE SR100 BIG GUN WITH AN 18 DEGREE TRAJECTORY IS THE MOST POPULAR PIVOT END GUN USED ON CENTER PIVOTS TODAY. A BIG GUN® SPRINKLER (OPERATING THROUGH A COMPLETE ROTATION) ON A QUARTER-SECTION PIVOT CAN EFFECTIVELY IRRIGATE UP TO 20 ADDITIONAL ACRES (8.1 HA). CONSIDERING THE COST EFFECTIVENESS OF PUTTING THIS ADDITIONAL LAND INTO PRODUCTION, AN END GUN OPTION SHOULDN’T BE OVERLOOKED.
SUCCESS DEPENDS ON PROPER APPLICATION

THE ARC SETTING IS THE KEY TO ACHIEVING MAXIMUM SYSTEM UNIFORMITY FOR END OF PIVOT PRODUCTS. FOR BIG GUNS, AN ARC SETTING OF 170 DEGREES WITH 10 DEGREES BEHIND THE MACHINE EFFECTIVELY MATCHES THE SYSTEM TARGET APPLICATION DEPTH.
PERFORMANCE DATA (US UNITS)

75 TAPER RING NOZZLE — 24° TRAJECTORY

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>0.4°</th>
<th>0.45°</th>
<th>0.5°</th>
<th>0.55°</th>
<th>0.6°</th>
<th>0.65°</th>
<th>0.7°</th>
<th>0.75°</th>
<th>0.8°</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>RAD. (FT)</td>
</tr>
<tr>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>42</td>
<td>73</td>
<td>50</td>
<td>78</td>
<td>59</td>
</tr>
<tr>
<td>30</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>37</td>
<td>79</td>
<td>55</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>35</td>
<td>—</td>
<td>—</td>
<td>32</td>
<td>77</td>
<td>40</td>
<td>82</td>
<td>49</td>
<td>86</td>
<td>59</td>
</tr>
<tr>
<td>40</td>
<td>27</td>
<td>75</td>
<td>35</td>
<td>80</td>
<td>43</td>
<td>86</td>
<td>52</td>
<td>90</td>
<td>63</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>81</td>
<td>49</td>
<td>87</td>
<td>53</td>
<td>93</td>
<td>60</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>33</td>
<td>85</td>
<td>42</td>
<td>92</td>
<td>53</td>
<td>99</td>
<td>64</td>
<td>104</td>
<td>77</td>
</tr>
<tr>
<td>70</td>
<td>36</td>
<td>88</td>
<td>45</td>
<td>97</td>
<td>57</td>
<td>105</td>
<td>69</td>
<td>111</td>
<td>83</td>
</tr>
<tr>
<td>80</td>
<td>39</td>
<td>91</td>
<td>49</td>
<td>104</td>
<td>61</td>
<td>111</td>
<td>74</td>
<td>117</td>
<td>89</td>
</tr>
</tbody>
</table>

100 TAPER BORE NOZZLE — 24° TRAJECTORY

<table>
<thead>
<tr>
<th>Pressure (psi)</th>
<th>0.5°</th>
<th>0.55°</th>
<th>0.6°</th>
<th>0.65°</th>
<th>0.7°</th>
<th>0.75°</th>
<th>0.8°</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>RAD. (FT)</td>
<td>GPM</td>
<td>RAD. (FT)</td>
<td>GPM</td>
<td>RAD. (FT)</td>
<td>GPM</td>
<td>RAD. (FT)</td>
</tr>
<tr>
<td>40</td>
<td>47</td>
<td>96</td>
<td>57</td>
<td>101</td>
<td>66</td>
<td>107</td>
<td>78</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>103</td>
<td>64</td>
<td>108</td>
<td>74</td>
<td>113</td>
<td>87</td>
</tr>
<tr>
<td>60</td>
<td>55</td>
<td>108</td>
<td>69</td>
<td>114</td>
<td>81</td>
<td>120</td>
<td>96</td>
</tr>
<tr>
<td>70</td>
<td>60</td>
<td>113</td>
<td>75</td>
<td>119</td>
<td>88</td>
<td>125</td>
<td>103</td>
</tr>
<tr>
<td>80</td>
<td>64</td>
<td>118</td>
<td>79</td>
<td>124</td>
<td>94</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>90</td>
<td>68</td>
<td>123</td>
<td>83</td>
<td>129</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>72</td>
<td>128</td>
<td>87</td>
<td>134</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>76</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE DATA (METRIC UNITS)

75 TAPER RING NOZZLE — 24° TRAJECTORY

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>10.2 mm</th>
<th>11.4 mm</th>
<th>12.7 mm</th>
<th>14.0 mm</th>
<th>15.2 mm</th>
<th>16.5 mm</th>
<th>17.8 mm</th>
<th>19.1 mm</th>
<th>20.3 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
</tr>
<tr>
<td>1.75</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td>2.09</td>
<td>7.5</td>
<td>24.0</td>
<td>2.58</td>
<td>9.3</td>
<td>25.5</td>
<td>3.15</td>
</tr>
<tr>
<td>3</td>
<td>1.78</td>
<td>6.4</td>
<td>23.5</td>
<td>2.28</td>
<td>8.2</td>
<td>25.0</td>
<td>8.3</td>
<td>23.5</td>
<td>2.28</td>
</tr>
<tr>
<td>3.5</td>
<td>1.93</td>
<td>6.9</td>
<td>24.5</td>
<td>2.46</td>
<td>8.9</td>
<td>26.5</td>
<td>3.06</td>
<td>11.0</td>
<td>28.5</td>
</tr>
<tr>
<td>4</td>
<td>2.07</td>
<td>7.4</td>
<td>25.5</td>
<td>2.63</td>
<td>9.5</td>
<td>28.0</td>
<td>3.27</td>
<td>11.8</td>
<td>30.0</td>
</tr>
<tr>
<td>4.5</td>
<td>2.19</td>
<td>7.9</td>
<td>26.5</td>
<td>2.80</td>
<td>10.0</td>
<td>29.0</td>
<td>3.47</td>
<td>12.5</td>
<td>31.5</td>
</tr>
<tr>
<td>5</td>
<td>2.32</td>
<td>8.3</td>
<td>27.0</td>
<td>2.93</td>
<td>10.5</td>
<td>30.5</td>
<td>3.66</td>
<td>13.2</td>
<td>32.5</td>
</tr>
<tr>
<td>5.5</td>
<td>2.43</td>
<td>8.8</td>
<td>27.5</td>
<td>3.07</td>
<td>11.0</td>
<td>33.0</td>
<td>3.85</td>
<td>13.8</td>
<td>34.0</td>
</tr>
<tr>
<td>6</td>
<td>2.55</td>
<td>9.2</td>
<td>28.0</td>
<td>3.20</td>
<td>11.5</td>
<td>35.0</td>
<td>4.02</td>
<td>14.5</td>
<td>36.0</td>
</tr>
</tbody>
</table>

100 TAPER BORE NOZZLE — 24° TRAJECTORY

<table>
<thead>
<tr>
<th>Pressure (bar)</th>
<th>12.7 mm</th>
<th>14.0 mm</th>
<th>15.2 mm</th>
<th>16.5 mm</th>
<th>17.8 mm</th>
<th>19.1 mm</th>
<th>20.3 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/S</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
<td>M³/HR</td>
</tr>
<tr>
<td>2.75</td>
<td>2.88</td>
<td>10.4</td>
<td>29.5</td>
<td>3.61</td>
<td>13.0</td>
<td>31.0</td>
<td>4.15</td>
</tr>
<tr>
<td>3</td>
<td>3.01</td>
<td>10.8</td>
<td>30.0</td>
<td>3.76</td>
<td>13.5</td>
<td>31.5</td>
<td>4.34</td>
</tr>
<tr>
<td>3.5</td>
<td>3.24</td>
<td>11.7</td>
<td>31.5</td>
<td>4.04</td>
<td>14.5</td>
<td>33.0</td>
<td>4.70</td>
</tr>
<tr>
<td>4</td>
<td>3.46</td>
<td>12.5</td>
<td>32.5</td>
<td>4.30</td>
<td>15.5</td>
<td>34.5</td>
<td>5.04</td>
</tr>
<tr>
<td>4.5</td>
<td>3.67</td>
<td>13.2</td>
<td>34.0</td>
<td>4.55</td>
<td>16.5</td>
<td>35.5</td>
<td>5.35</td>
</tr>
<tr>
<td>5</td>
<td>3.86</td>
<td>13.9</td>
<td>35.6</td>
<td>4.76</td>
<td>17.2</td>
<td>37.0</td>
<td>5.59</td>
</tr>
<tr>
<td>5.5</td>
<td>4.05</td>
<td>14.6</td>
<td>36.0</td>
<td>4.98</td>
<td>17.9</td>
<td>38.0</td>
<td>5.93</td>
</tr>
<tr>
<td>6</td>
<td>4.22</td>
<td>15.2</td>
<td>37.0</td>
<td>5.18</td>
<td>18.7</td>
<td>39.0</td>
<td>5.52</td>
</tr>
<tr>
<td>6.5</td>
<td>4.39</td>
<td>15.8</td>
<td>38.0</td>
<td>5.38</td>
<td>19.4</td>
<td>40.0</td>
<td>5.75</td>
</tr>
<tr>
<td>7</td>
<td>4.56</td>
<td>16.4</td>
<td>39.0</td>
<td>5.57</td>
<td>20.0</td>
<td>41.5</td>
<td>6.22</td>
</tr>
<tr>
<td>7.5</td>
<td>4.71</td>
<td>17.0</td>
<td>40.5</td>
<td>5.75</td>
<td>20.7</td>
<td>42.5</td>
<td>6.96</td>
</tr>
</tbody>
</table>

Tel: +1 509.525.7660 / Fax: +1 509.525.7907 / nelsonirrigation.com / info@nelsonirrigation.com
800P 2" PIVOT GUN CONTROL VALVE

Winner of AE50 (American Society of Agricultural and Biological Engineers) 2001 Outstanding Innovations — The Pivot Gun Control Valve combines a Big Gun® Sprinkler and an 800 Series Valve (A2 B11 C3). No Solenoid is needed for this gun-control system when a booster pump is used.

How it works: The 2" valve is normally closed. When the booster pump is turned on, the added pressure* causes the valve to open operating the gun. No other accessory is needed. The small amount of water in the sleeve chamber (about 1/2 cup) is forced back into the system. When the booster pump is turned off then the system pressure re-closes the valve.

*Booster pump added pressure must be 18 PSI (1.2 bar) or more.
SRNV100 Big Gun® Nozzle Valve

The SRNV100 is the standard SR100 Big Gun® configured with a simple mechanical valve which can be either hydraulically or electrically controlled and linked to the pivot control system. The nozzle valve improves end gun performance and efficiency by eliminating pressure loss, turbulence, and debris hang-up typical of other end gun control valves.

Delta P Kit

Part #12289

The Delta P can be paired with the SRNV100 to further improve reliability by eliminating the need for a costly solenoid. The Delta P automatically opens and closes the nozzle valve by sensing pressure upstream and downstream of the booster pump.
FIELD-TESTED
FIELD-PROVEN
EVERY NELSON PRODUCT IS PUT TO THE TEST, EVERY STEP OF THE WAY. IN THE END, IT’S WHAT HAPPENS IN THE FIELD THAT MATTERS.
CONTROL YOU CAN COUNT ON SEASON AFTER SEASON

MANUAL ON-OFF
ALL 800 SERIES VALVES (EXCEPT 800P) ARE EQUIPPED WITH A 3-WAY MANUAL ON-OFF SELECTOR VALVE.

ELECTRIC ON-OFF
ADD A SOLENOID FOR ELECTRIC ON-OFF CAPABILITY.

INTERNAL CAGE
UPSTREAM WATER IS APPLIED TO THE OUTER SLEEVE CHAMBER. THE SLEEVE BECOMES HYDRAULICALLY BALANCED AND THE FLOW PASSAGE IS CLOSED OFF BY THE SLEEVE PRESSING AGAINST THE CENTER SEAT.

OPEN
WATER PRESSURE IS RELIEVED FROM THE SLEEVE CHAMBER, ALLOWING THE VALVE TO OPEN.
AS A HYDRAULICALLY OPERATED SLEEVE-TYPE VALVE, THE 800 SERIES CONTROL VALVE IS DESIGNED FOR VERSATILITY. THE BASIC BODY CAN BE EQUIPPED WITH SEVERAL DIFFERENT OPTIONS FOR CONTROLLING PRESSURE AND FLOW IN PIPING AT THE PIVOT POINT OR END GUN VALVE CONTROL. IT’S ALSO ENGINEERED FOR EXTREMELY HIGH EFFICIENCY, RESULTING IN LOW PRESSURE LOSS AND HIGH FLOW CAPACITY.

PRESSURE CONTROL

THE PRESSURE CONTROL REGULATOR (“REDUCING” FOR DOWNSTREAM, “SUSTAINING” FOR UPSTREAM) DIRECTS WATER FLOW WHICH POSITIONS THE SLEEVE DURING OPERATION.

RATE-OF-FLOW

ADD THE RATE-OF-FLOW (MODEL D18) CONTROL TO REGULATE THE FLOW RATE DURING SYSTEM START-UP.
ACV AIR CONTROL VALVE

For air relief, vacuum air relief, and continuous air release under pressure.

- Pump start-up high capacity air venting
- Pump shut-off vacuum relief
- Filter backflush
- Vent at high points
- Continuous air release during system operation

IMPROVED DESIGN

REINFORCED SEAL PREVENTS MISALIGNMENT

IMPROVED AIR SEPARATION TO REDUCE DRIPS DURING AIR RELEASE

NEW MATERIAL RESISTANT TO PUMP LUBRICANTS

2” (50 mm) ACV

DESIGNED FOR ULTIMATE FLEXIBILITY & TOUGH JOBS
THE 1000 SERIES IS GEARED TO HANDLE TOUGH AGRICULTURAL ENVIRONMENTS

Pressure Loss Data
for 2” & 3” 1000 Series
Inline Valves (fully open)

SAVE WATER, SAVE ENERGY
» Higher flow capacity & lower friction loss — better than any other valve on the market.
» More precise, more stable pressure regulation over a wider range of flow.
» Pressure regulation with minimal pressure differential required across the valve.

APPLICATIONS
» Zone control for sprinkler or drip irrigated row crops, nursery crops, orchards and vineyards.
» Place valve under Big Gun® for solid set irrigation, end of pivot solutions and a variety of environmental controls including fire suppression, dust suppression and cooling.
WARRANTY AND DISCLAIMER Nelson Irrigation Products and Accessories are warranted for one year from date of original sale to be free of defective materials and workmanship when used within the working specifications for which the products were designed and under normal use and service. The manufacturer assumes no responsibility for installation, removal or unauthorized repair of defective parts. The manufacturer’s liability under this warranty is limited solely to replacement or repair of defective parts and the manufacturer will not be liable for any crop or other consequential damages resulting from defects or breach of warranty. This warranty is expressly in lieu of all other warranties, express or implied, including the warranties of merchantability and fitness for particular purposes and of all other obligations or liabilities of manufacturer. No agent, employee or representative of the manufacturer has authority to waive, alter or add to the provisions of this warranty, nor to make any representations or warranty not contained herein.

These products may be covered by one or more of the following U.S. Patent Nos. 6439477, 6688539, 7048001, 7140595, 7240860, 7287710, 7562833, 7942345, 8028932, 9283577 and other U.S. Patents pending or corresponding issued or pending foreign patents.