PRINCIPLE OF OPERATION

The 2” valve is normally closed. When the booster pump is turned on, the added pressure* causes the valve to open operating the gun. No other accessory is needed. The small amount of water in the sleeve chamber (about 1/2 cup) is forced back into the system. When the booster pump is turned off then the system pressure re-closes the valve.

*Booster pump added pressure must be 18 psi or more.

Provide a way to vent air out of booster pump.

BIG GUN® SPRINKLER (SR75 OR SR100)

- The proven Big Gun® reliability.
- Steady drive reduces end gun vibration.
- Long life bearings.
- Maximum throw performance.
- No adjustment needed.
- Easy to use bolt-on connection.

800 SERIES VALVE (A2 B7 C3)

- Smooth operation.
- Efficient; low pressure loss.
- Minimal control water = minimized filtration.
- Fail safe normally-closed valve.
- Automatic drain to avoid freeze damage.

*An electric solenoid is not necessary when a booster pump is used. The valve can be used in conjunction with a solenoid if a booster pump is not used.
BASIC OPERATION OF VALVE

CLOSED

Upstream water is applied to the outer sleeve chamber, the sleeve becomes hydraulically balanced and the flow passage is closed off by the sleeve pressing against the center seat.

OPEN

The added pressure from the booster pump forces the sleeve outward. Water in the sleeve chamber is evacuated back into the system and the endgun begins to operate.

INSTALLATION NOTES

WATER SOURCE: The source of water pressure to keep the valve closed must be upstream of the booster pump (as shown). The water must be filtered. HINT: The best reliability has been experienced when the supply tap is a riser up top of the pivot system pipe.

REDUCE FREEZE DAMAGE: The built-in rubber drain automatically empties water from the top-side of the valve/gun to reduce potential freeze damage. Likewise, a drain is provided for the pipe below the valve. When working correctly, drainage can be observed immediately after the valve shut-off. Pressure of 6-15 PSI will close the drain.

PUMP PRIME: Air venting below the base of the valve is essential for operation. Trapped air may hinder the booster pump. In the normal installation, venting is accomplished by the lower drain/vent. HINT: If turning on the pump will not open the valve, check to be certain the booster pump chamber evacuates air so that the pump can prime.

TROUBLESHOOTING

VALVE WON'T OPEN:
1. Make certain that the pump can prime as stated above.
2. Verify the pump pressure is boosted at least 18 PSI.
3. For the application where an electric solenoid is used, the following check order should be followed:
 a. The pivot panel or controller.
 b. The span or control wiring.
 c. The solenoid coil.
 Don’t go to the span or control wiring until you have verified that the pivot panel is sending out the necessary voltage. It is more often the wiring or solenoid but too much time can be wasted if it is the pivot control. Check out the span wiring for resistance and voltage. This can usually be done at the pivot panel location. Lastly go to the valve and check the solenoid by disconnecting the coil from the wire. Normal coil resistance (W) for Nelson supplied ‘Parker Skinner’ solenoid is:
 - 110 VAC ≈ 180 Ohms
 - 220 VAC ≈ 744 Ohms
 - 440 VAC ≈ 2960 Ohms

VALVE WON'T CLOSE:
1. Check that the control tube is open and is not plugged or kinked.
2. Look for debris caught in the valve inlet that could potentially prevent the diaphragm from seating.